El Portal de las Tecnologías para la Innovación

Aprendizaje por refuerzo

¿Qué es Aprendizaje por refuerzo?

El aprendizaje por refuerzo es una técnica de machine learning en la que un agente aprende a tomar decisiones en un entorno interactivo, a través de la retroalimentación que recibe de su acción. El objetivo del agente es maximizar una recompensa numérica a largo plazo, que se le otorga por tomar las decisiones correctas en el entorno.

El aprendizaje por refuerzo se basa en el concepto de prueba y error, donde el agente aprende a través de la interacción continua con el entorno, ajustando sus acciones en función de las recompensas y penalizaciones que recibe. El agente explora diferentes acciones en el entorno, observa los resultados y aprende a seleccionar las acciones que maximizan la recompensa a largo plazo.

El aprendizaje por refuerzo se utiliza comúnmente en aplicaciones de robótica, juegos y automatización de procesos, donde un agente autónomo debe aprender a tomar decisiones en tiempo real para lograr objetivos específicos.

Scroll al inicio